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1. INTRODUCTION

There have been a number of different approaches in the scientific
literature to the frequency analysis of time series, most notably the
periodogram technique of Schuster (1906) and the maximum entropy method
of Burg (1968). The periodogram approach was substantially improved
vhen the fast Fourier transform algorithms became widely available
(Good 1958; Cooley and Tukey 1965) as a means of speeding up the com~
putations; this, plus the variety of smoothing algorithas proposed for
improving the statistical properties of the periodogram (Daniell 1946;
Blackman and Tukey 1958; Parzen 1961; Cogburn and Davis 1974; Wahba 1979),
and the extension of these ideas to higher—order spectral estimation
(Brillinger and Rosenblatt 1967), have together ensured the popularity,
at least in the statistical literature, of periodogram-based techniques
for spectrum estimation (Koopmans 1974; Brillinger 1975; Bloomfield 1976).

Concern, however, over the relatively low resolution properties of
the periodogram (and also of its swmoothed versions) prompted the geophysics,
astronomy, and engineering fields to turn towards the higher resolution
maximm entropy method of spectrum estimation (Ulrych and Bishop 1975;
Kirk et al 1979), especially when it came to the snalysis of short data
records. For example, in VWells and Chinnery (1973), the maxiwmm entropy
msethod wvas used to separate the Chandler spectral component at approxi-
mately 0.83 cycles per year (cpy) from the annual spectral component at
1.0 cpy in short records of astronomical latitude and polar motion data.
In Bolt and Currie (1975), the maximum entropy method was shown to be
superior to the periodogram in terms of enhanced precision and number of

torsional eigenperiods detected from data recorded at Trieste following




the 1960 Chilean earthquake. The maximm entropy method was also used in
Jensen and Ulrych (1973) to analyze the perturbation motions of Barnard's
Star and provide detailed information concerning the number and orbital
periods of its unseen companion planets.

The equivalence of the maximum entropy method with the least-squares
fitting of very high order autoregressive models was pointed out by Lacoss
(1971) and van den Bos (1971), and its relationship to the maximum
likelihood spectrum estimator by Burg (1972). The paper of Berk (1974) is
relevant here. Critics of the maximum entropy method have pointed to its
sensitivity to the selection of the order of the autoregressive process,
the computational complexity and programming expense of the method, its
lack of a variance estimate for the resulting spectral demsity estimator,
interpretation problems (since it is not clear what the relationship is
between the "power” of the maximum entropy spectral density and the true
amplitude of the spectral component at a particular fraquency), and the
difficulty of extending it to the frequency analysis of multiple series.
We refer the interested reader to the papers by Ulrych (1972), Akaike
(1969), Herring (1980), and to the references therein.

With these comments in mind, we present s different approach to the
traditional methods of frequency analysis of time series. Unlike the
periodogram technique and the maximum entropy method, we do not attempt to
estinate the power spectrum of a series; rather, we direct attention towards
the exploratory screening, idemtification, and resolution of any significant
frequencies that might be present in a time saeries. For a discussion of the
resolution problem, see, for exsmple, Jenkins and Watts (1968, pp. 277-279),
Brillinger (1975, p. 69), and Bloomfield (1976, pp. 96 and 172).




To accomplish this objective, we consider (in Section 2) a quantity
termed the "amplitude density function" which was introduced in Siddiqui
and Izenman (1981) adapted from an idea of Paul (1972), and vhich is derived
from the spectral representation of the sum of an harmonic regression func-
tion and a stochastic error process, and oun the inversion theorem associated
with that representation. The amplitude density function as defined in

Section 2 possesses the twin desirable properties of mean square consistency

and high frequency resolution, is related to the finite Fourier transform
of a tapered time series, and as such, can be computed using fast Fourier
transform methods.

After using the amplitude density function to identify a (possibly, large)
number of prominent frequencies in a series, the next step is to select a
subset of those frequencies as input to a "hidden periodicities™ regression
wodel (see Section 3). There are basically two methods in the statistical
literature for testing the significance of suspected periodicities, and
both restrict themselves to the periodogram situation; that is, vhere the
frequencies to be tested are Fourier frequencies, or, integer multiples of
'r'l, and orthogonality relations simplify the analysis. The methods are
those due to Fisher (1929, 1940) and to Eartley (1949). See also Siegel
(1980). Little attempt has been made in the statistical literature,
however, towards solving the more general problem of testing arbitrary
non-Fourier frequencies for significance, which is the case when periods
are not integral divisors of the series length. Some work in this direc-
tion can be found in Section 4.4 of Anderson (1971). Im Section 3 of this
paper, we discuss the use of straightforvard generalizations (to the non-

Fourier frequencies case) of the Fisher and Hartley tests.
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Ve also introduce in this paper (ses Section 4.3) a high-resolution
“frequency trace” to investigate the extent and direction of possible
nonstationarity in a time seriss. All the techniques described in this
paper are illustrated in Section 4 by an extremely detailed frequency
analysis of that persnnial favorite, the annual asunspot mumbers series
for the period 1749-1979. Another novel feature presented in Section &
is the use of a physically motivated data transformation of the sunspot

series which dramatically improves the performance of the model described
in Section 2.




2. SPECTRAL REPRESENTATION, TRE INVERSION THEOREM, AND
THE AMPLITUDE DENSITY FUNCTION

Let X(t), t=0,%1,22,..., denote a time series observed at equispaced
time intervals, vhere the origin and unit of time are chosen arbitrarily.
Consider the following stochastic model:

X(t) = u(t) + e(t), t=0,%1,22,..., .1)
where

B(e) = ag + Iy {a,con(2at,t) + Bein(ant,e)) (2.2)

1s the regression function, p(t) = E{X(t)}, the frequencies, £,
j=1,2,...,k, as well as their number, k, the long-term average a,, and
the coefficients (aj, Bj)’ 3=1,2,...,k, are all assumed to be unknown
constants, and the error series, e(t), t=0,11,22,..., 1s a strictly

stationary process with first two moments

E{e(t)) = 0 and cov{e(t), c(t+u)} = c(u), t,u=0,21,22,..., (2.3)
vhere

2:__.|c(n)‘ <=, (2.4)

Under condition (2.4), the second-order spectral demsity function

g (f) = t:__.oz'u"c(u), ey, (2.5)

of the error series is bounded and uniformly contimuous. While ay and

the coefficients (a,, Bj). j=1,2,...,k, enter the model (2.1)-(2.2) in a
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linear fashion, the frequencies £., j=1,2,...,k, (and k) enter in a non-
linear wvay. Thus, if k and the frequencies f,, 3=~1,2,...,k, were
known & priori, the cosfficients could be estimated by standard regression
techniques.

2.1, The Amplitude Density Function
For convenience, replace the trigonometric functions in (2.2) by

-10

sin 0 = -211-(.“-0'“) and cos 6 = %-(c“-n )

and write 71 - °;|-1Bj' Denote also by ;j the complex congugate of 7_1’ 80
that |Yj|2 - Yj;j - ai + ': is the squared amplitude of the complex number
yj. Then, (2.2) becomes

u(t) - co + t;.l{Yjezmjt + 'Y‘j.-z'l’ifjt}

]
- {a .2'lift dA‘. e, (2.6)

where the function Au(f) is defined in terms of its differential increments,

namely,
d‘\l(o) - “oo %(fj) - lezp %(‘fj) = -Y-j,z: 3=1,2,...,k, (2.7)

and dA () = O for all other f in [, ). The Fourier-Stieltjes integral
on the right-hand-side of (2.6) is the spectral representation of the
regression function u(t) in (2.2), and the fumction %(f), 45 < fch, in
(2.6) is of bounded variation.

Furthermore, by a theorem of Cramér (1942), the error series in (2.1)

has a spectral representation given by
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«w = [ 2THEE 4 (), @.8)

wvhere Ac(f) is a complex-valued stochastic process having orthogonal
increments; that is, E{dAe(f)} = 0, and

E{dA_(£)dA_(£7)) = 8{e-£')g (£)af, <€k, (2.9)

vhere &{a} is the Kronecker delta (&{a}=l if a=0, and is O otherwise).

Combining (2.6) and (2.8), the spectral representation of the X(t)-

process is, therefore, given by

x
x® = [ ML an (0, (2.10)

where Ax(f) = Au(f) + Ac(f). In this representationm, Ax(f) has jumps at
f= :tfj. J=1,2,...,k, and at £ = O, and is stochastically continuous at
all other points. We shall henceforth call the process Ax(f), Sgcfcly,
in (2.10) the (complex-valued) amplitude process corresponding to X(t),
t=0,+1,%2,..., or, just the amplitude process if the series is understood.

Consider now a partition of the frequency band (0, ¥%) into a number
of nonoverlapping subbands of equal length Af > 0, and let £ be an

arbitrary frequency in (0, ¥) such that
0 < f-MAf < fHsAf < ), (2.11)

Define

AA,(f) = Ax(f-l'kl\f) - Ax(f-lsAf) - Aﬁ.(f) + 8A (D) (2.12)




to be the increment of the amplitude process in the frequency subband
(f-3sAf, fH4Af) of length Af around f. Now, if we shrink the value of Af
sufficiently, it will eventually become smaller than min, <m#ag k(lf.:fnl).
For such a Af, at most one of the k frequenscies in the model (2.2)

will fall into an interval of length Af on the frequency exis. It follows

that, for Af small enough,

' 0, 1f no !j is in (f-350f, fHsAf)
aA (D) -{ . . (2.1%)
2 73, if cthere 1is an fj in (£f-35Af, £43Af)
i=1,2,...,k,
and
Mc(f) = ge(f')df, (2.14)

vhere f' 18 in (f-dsAf, f+HsAf). Thus, as Af ¢ O,

AAx(f) + 0 and AAx(f)/Af »> g‘(t’), if £ ¢ £, 3=1,2,...,k, (2.15)

BAL(E) > Gr, wnd BALEN/AE + =, 1F £ = £y, 301,2,....k. (2.16)

The following inversion theorem allows us to express Mx(f) in terms of

the series X(t), t=0,%1,22,... .

Theoreml. If £ + }sAf are continuity points of A"(t), and hence also of
Ay(£), then

BAg(f) = 1.8.m. o Tpoy S1BLEEAD) S2WIfE geey g <ny, (21

vhere, for t=0, the term in the -..msnd {s X(0)Af, and the limit is taken
in_the mean-square sense.




Proof. See Doob (1953), Theorem 4.1 of Chapter X, or Hannan (1970),

Theorem 3" of Chapter II.

This theorem, therefore, provides us with a natural estimator of Mx(f).
Let T be the number of data values in the time series, and let N be such
that 2M+1 < T, but of the order of T. Take the time-origin to be the

(¥+1)st value, and vrite

D ey - ff  olaresD) 2L gy scf o,

s (2.18)

Note that, for resl-valued X(t),

AA§?’(£) - AA§T)(-f) and Aa§?’(f+1) - AA§?)(f),

so that, without loss of generality, we may take the principal domain of
the estimator (2.18) to be the frequemcy band 0 < £ < ¥,
There are alternmative ways of visualizing Mx(n (£). The finite

Fourier transform of the series X(t), t=0,%1,%#2,...,2N, is given by

N -2nift
t=-N ©

quencies f-3Af and fHAf, equals

b % x(t), 0 < £ < ), vhich, vhen integrated between the fre-

£4350¢
£t T,
=] Ty
XY,
= P,

so that, if Af is taken to be small (relative to 1/T), then Aﬁa)(f) in
(2.18) will be essentially proportionsl to the finite Fourier transform
of X(t) at frequency £ (0 < f <)), The factor h(t) = sin(wtAf) /st in (2.18)
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has maximum value Af (at t=0), and will be very close to Af for all
other values of t. In fact, {f T=231 and Af = 10-4 (see Section §),
then the minimum value of h(t) s 0.9998 x 10™ (at t=2115), and the
relative variation of that function is, therefore, (maximum-minimum)/Af
<1073, or, 0.1 percent. Paul (1972) had a similar idea of using the
integral of the finite Fourier transform of X(t), but did little more
than dwell at length on the inversion formula (2.17).

Furthermore, for a given value of Af, (2.18) may be regarded as
the finite Fourier transform of the "tapered" series Y(t) =h(t)X(t),
t=0,+1,%2,...,tN, where (Af)-]'h(t) is related to the Riemann-Lanczos
convergence factor for Fourier transforms; see Lanczos (1956, Chapter IV)
and Brillinger (1975, Section 3.3). If we let B () =zl & ffn(y)
be the finite Fourier transform of h(t), then, for Af very small, it
is easy to show that !!(n (£) = (Af)sin(x£T)/sin(wf), which, as a function
of £, 1s concentrated avround f=0 with maximum value TAf, and fluctuates
in sign for 0 < £ < J; see Brillinger (1975, p. 51).

Consider now the statistic

2 (o) = [aalP ()| /0 (2.19)

as an estimator of the (real-valued) function

ag(f) = laag(nlse , (2.20)

for 0 < £ <J). We call the statistic (2.19) the amplitude demsity

function of the velues X(t), t=0,%1,22,...,iN. In doing this, we

differ from Paul (1972), who used the same terminology for the quantity
(2.17). As an immediate consequence of the above theorem, we have the

following




-11-

Corollary. In the limit, as T + «, 4!') (f) 4is a mean square consistent

estimator of ax(f); that is,

lin,, E(|a{7 ()-ay(6)|%}a0, O <<k, (2.21)

Proof. Use the fact that (mean square) convergence of a sequence of
complex numbers to a complex number implies (mean square) convergence
of the real and imaginary parts of the former to the corresponding real
and imaginary parts of the latter.

For practical applications, attention will usually center on the
user's choice of Af when computing aﬁT)(f). 0<£f<k, in (2.19).
Dividing the frequency interval (0,}) into disjoint subintervals each
of length Af means that just under 1/2Af points need to be computed
to obtain the complete graph of a§n(f), 0<f<l, Thus, for example,
if Af = 10'4 (see Section 4), then we need to compute approximately
5000 values. In general, the choice of Af will be tied to the length
of the geries, and to the spectral distribution of the k £requencies.
Typically, the longer the series and the larger the number of discrete
frequencies to be recovered, the smaller the value of Af that should
be used. Omne procedure that works quite well if the series is long and
1f little i{s known concerning its frequency structure is to use a sequence
of decreasing values of Af which provide, in turn, an increasing degree
of frequency resolution and smoothness of the graph of 4‘1‘) (£), 0 < f <y
see Siddiqui and lzenman (198l). Generally, a choice of Af = 1074 seems

to give useful results for a wide variety of series lengths; see the

discussion in Section 4.3 of this paper. For especially long series

lengths, Af = 10”3 may be preferred.




2.2. Frequency Resolution Properties

We next address ourselves to the frequency resolution properties of
the amplitude density function (2.19). Let Af be fixed, but smaller
than minlgnfnf_kqu'fnl)' Since, as a function of f, ay(f) 4n
(2.20) possesses local maxima at the k points f-fj. 3=1,2,...,k, the
locations of the k largest relative maxima of aé'r) (£f) (out of, say,
the m* > k local maxima actually obtained) provide us with appropriate
estimates of the fj’ §=1,2,...,k. The resolution properties of 4’1‘) (¢3)

then follow from the fact that

(T 2 N ~2wif 2
B L bl T (2.22)
and from published results on the asymptotic properties of periodogram
estimates of the fj’ j=1,2,...,k, derived undexr a variety of assump-
tions on the error series. Within the context of the present paper, we

consider the following assumption.

(A) The series ¢(t), t=0,t1,$2,..., in (2.1) is assumed to be

a sequence of indenendently and identically distributed (i.i.d.) random
variables (a pure noise series) each with mean zero and finite variance;

that is, in (2.3) we set c{u) = 0 for u # 0, vhile (2.4) becomes
c(0) < =, See Whittle (1952), Walker (1971), and more recently Damsleth
and Spjédtvoll (1982).
In the following, we write f = (fl.tz.....fk) and
£« (60,60, 6(D), vhere the £7, 3u1,2,...,k, are the
k largest local maxima of a§n(t). 0<f <k, and set
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(T) (

00 = I alPeey) . (2.23)

Then, subject to an appropriate separation condition imposed on the £ 40

3=1,2,...,k, such that

Yoy, min) g <xTl D == (2.24)

(vhich is needed to ensure that two different frequency estimates do not
converge in probability to the same value), ¢§T) (£f) in (2.23) is
(M
imized wvhen f=£f "', We shall also write f a
max v f~f e s also write f, ., 5,00 andBj.o
for the true values of fj’ “j’ and Sj respectively, j=1,2,...,k,

and without loss of generality, we set Gy = 0.

Theorem 2. Llet X(t), t=0,%1,%#2,..., be a time series satisfying (2.1)

and (2.2), where the error series €£(t) satisfies assumption (A), and

Dy ow e ly . ™
(2.24) holds. Then, fj fj,O oP(T ), §=1,2,...,k; that is, fj

converges in probability to f

as T+, §=1,2,...,k

3,0

Proof. It suffices to consider the function

(1) k(D
Y (D) = Sy by £y (2.25)

where b7 (0) = (A0 (e (01, 0 < £ <N Ser ¥, o= oy -1, o,

«27iut

21,2,...,k, and KD () = 5 w0, 0 cu <y, then,

following the methods of Walker (1971), we have that



| =14~

gy o
bx (fj)

<
-2wif.t 2rif, .t -2%if, .t 2
- II::_ 5 h(t)e J [t::_l{vz 0® £,0 +¥y o° £.0% 4 e(t)l]
- »

k (1) 3 gD
= |Egy vy o8 (Ey-fy P +Yy o (£44Ey Q) +

-2wif. t 2
"'::-u h(t)e 3 e

- lzz_l{yz’onm(fj-f&’o) »f’y‘z'an"")(fjﬂs,’.o)}l2 +

wif t -27if ¢
i e(t)lz+28e{(t’:__“h(t)e 3 ey x

-2
+ It:__uh(t)e

 ~ (T (T
x fzz-1‘*z.o“( )‘fj‘fz,o)”z.o“ )(fj"fz,o”” - (2.26)

Since the variances of the real and imaginary parts of

-27if. .t 2
Z:__nh(t)e 3 €(t) are each respectively 3Xc(0)(A£f)°T+ 0(1l), then

~2vif. t
t:__n h(t)e Ie@e) = Op('rl’) .

There are k® differences in (2.26) of the form Y

3=1,2,...,k; however, according to the separation condition (2.24), only

=1,2,...,k,

k of these diffdrences can be 0('1'-1), namely, fi-f.‘l 0’ §=1,2,...,k.
1

Now, for small values of u, the function lli(r)(u)lz - (Af)zainz(m‘r)lsinz(w)

decreases monotonically from its absolute maximum of (approximately) (Af'l‘)2

to a minimm of sero at n-'r-l. Hence, if fj"fj,o is small enough,
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bf“(f ) 1s doainated by the term |y, B wP e

2

bty @ = Iy, o0 + 0 ¥ @.27)

and 1f {S;]} 1s a sequence of sets in f-space for which (2.24) holds,

then,

s P @ -z, 6] 8] PP eeyg, D1 0 ¥ . (.20

If we now let
By (8) = {f£: lfj-!j’°|<61‘r. 4=1,2,...,k} ,

and [&r(6)]° - sr"RT(” be the complement of IT(C) wvith respect to

S

g then, for sufficiently small §,

-2 (m
p la, [T “sup ¥y (O}
ge[R,(5))°

- (T ee _ 2

- @0? Iy ] 487 O p Lin fetn (ws)/-r’.m (x$/1) 1}
2

- p 1w 2P
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where 50. “1,0"2,0"“"&,0)’ Hence

)
» L [r(esP-g, 910,

and the theorea follows.

These results have been checked by simulating a number of series
consisting of cosinusoids with discrete frequencies fairly close to
each other, with varying relative smplitudes, and with and without an
additional 1.i.d. Gaussian error component having a standard deviation
the size of the largest amplitude. We can report that in every case
so far considered, all frequencies in sach of the generated series were
recovered with an exror of about 1/10T by using the approach outlined in
this paper. Specific details of these simulations will appear elsewhere.

For the case in which the error series €(t) is not an 1.1.4d.
sequence of random variables, results have been obtained for periodogran
estimates of frequency by Hannan (1971, 1973) and by Walker (1973).
Hannsn, in his 1971 paper, assumes ¢£(t) to be a linear process; that
is,

€(t) = L, g(w)E(t-v), I lgw)| <= , (2.29)

wvhere the E(t) form a pure noise series with zero mean and unit variance
and possess a continuous spectral density. (Hannan refers to this as
Condition A.) The error series in (2.29) is strictly stationary with
finite second moments. Walker (1973) expands the form of (2.29) slightly




by assuming that the £(t) are also Caussian with zero mean and finite
variance, and that the coefficients are known functions, g(u,-), of

an unknown parameter vector 0. Hannan (1973) makes a more general
assumption that €(t) 1s a strictly stationary ergodic process with
mean zero and finite variance, and then obtains an almost sure conver-
gence result for the periodogram estimator of a single (k=1) cosinusoidal
component. Such a result may be extended to apply to the methods of this
paper through the relationship (2.22) above.
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3. FREQUENCY SEARCH PROCEDURES

The graph of the smplitude demsity function, &l (f), 0 < £ <k,
will typically display a fairly large oumber of local peaks, say, .
The next logical step, therefore, is to separate out the k signifi-
cant peaks (k < a®) from those that more properly represent the
noise level of the time series in question. Tests for identifying a
dominant set of periodicities have traditionally been based on the
largest few ordinates of the graph of the periodogram of the series;
see Fisher (1929, 1940), Bartley (1949), Siegel (1980), and Section
6.1.4 of Priestley (1981). The problem is also related to the
"bump-hunting” problem of Good and Gaskins (1980).

For series in which multiple frequencies are present, a stepwise
search procedure is outlined on p. 34 of Walker (1971); there, it is
suggested that one frequency at a time be estimated by examining the
largest periodogram ordinate of the residual series after fitting all
previously determined frequency components. Versions of Walkex's
suggestion have appeared in recent articles by Hill (1977) and by
Damsleth and Spjétvoll (1982), Hill, on the one hand, in what must
have smounted to a veritable tour de force, claims to have used a
computationsl technigue involving over 100 iterations to estimate each
of forty selected frequencies (one at a time) in the series of monthly
synspot numbers (the actusl iteration and search techniques are not
explained in the paper, however). On the other hand, Damsleth and
Spjétvoll, also using essentially Walker's stepwise algorithm, end

up by selecting only eight frequencies in the annual sunspot number




series. A gearch procedure for the sunspot serfes which results in a
reasonable compromise between two such extremes, therefore, appears to
be a worthwhile goal.

In Siddiqui and Izenman (198l1), s two-stage search procedure is
described to estimate k and determine those frequencies
ff”,ff”.....ff” vhich are prominent in the series X(t); the first
stage consists of a straightforward adaptation of Fisher's \nll-kmm;
test for periodi-_ities, while the second stage uses information about
the error spectrum to wake the final choice. Here, we review that method
and compare it with an adaptation of Hartley's (1949) analysis of variance
based method using a maximum-F ratio statistic for fitting one frequency
at a time. We have found, empirically, for a number of series, that the
latter method yields results that are very close to those obtained by
the Siddiqui-Izenman procedure, yet possesses the attractive feature that
it is semi-automatic and can be carried out using only a least-squares
regression program. Simulation-studies of both search procedures for a

variety of situations are clearly needed for future guidance.

3.1. The Siddiqui-Izemman Procedure

Preliminary search. For the jth frequency, f;n. identified as
one of the n local peaks in the amplitude density function, compute

the following quantities:

agT) - ,%- z:_l(x(t)-i)cos(hf;nt), (3.1)
(1) 2 T < (T)
bj -3 zt_l(x(e)-x).m(zufj t), (3.2)




-
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(e{P2? = ({1 + V2%, G2

vhere X = ‘l.'-]'}::_l x(t), for 1-1,2,...,-*, and order the f;n, j=1,2,...,
according to the relative magnitudes of their [cgn]z, j-l,Z,....-*. Thus,
if

2 2 2
e 2 L)1 2 o 2 le(y] (3.4)

are the ordered values of (3.3), this, in turn, orders the frequencies in
a corresponding fashion as fg; . fg; avesy fgl). Next, apply Fisher's
test for periodicity to these m* ordered frequencies. This test
(Fisher 1929) is designed to test By: k=0 against R:k21, vhere

k 1is the true number of discrete frequencies in the process under review.
Although the test requires [cf:r)]2 to be computed for each of the N
Fourier frequencies f e ™ r/T, r=1,2,...,N, there exists an integer

rj, between 1 and K, such that

xr
Ifj(r) - _1._1' < N (3.5)

L
2T
and so, for large T, the value of [c}r)lz in (3.3) should be fairly close
to the value of [c::) ]2 corresponding to rjl'r. Thus, the generalization

of Fisher's test (Stevens 1939; Fisher 1940) will be approximately valid
for each of the n* normalized versions of (3.4)

gj(r) = [cgglzlziz. 3=1,2,...,m*, €3.6)
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wvhere a; is the total variance of the observed series. Set a =0.05

or 0.01, and define the percentile 3j T.a by the relation
2%
(m -
r:rob(::l 28 ’,’.,) a. (3.7)

Values of 8. 1,0 have been tabulated by Shimshoni (1971) for a=0.01

and 0.05, and for (1) N=5(5)50, j=1,2,5,7,10, and (11) N= 100

(100)3000, 3=1,2,5,10,25,50. Now, compare the value of [c(j)lz with

the appropriate value of 2.:3 » and carry out this comparison

3,10

according,to the following recipe suggested by Shimshoni. First, take

the value of 8 ra and pass all frequencies vhose [c:w)]z values
2%y

st

are greater than 2':‘1 T.a' Let the _11 frequency be the first one
%y

to fail this test (j, > 1). Next, take the value of g and
1 jllroc
pass all further frequencies whose [cz(‘r)]2 values are greater than
2 th
2"1“31,1’ o When a frequency fails this second test, say, the : P
frequency, take the value of 33 T.a and pass all frequencies for
2. 1 4
which their [e¢ (T)lz values are greater than Zs.rg And so on.
jzlt’a
The process ends when a new value of Zs.rg is greater than the value
of [c('r)]2 it was supposed to test. All remaining frequencies are
then failed at this level of significance. The number of frequencies
that are retained (out of the original m*) is denoted by m. In certain
situacions, major frequencies may be hidden by virtue of their close
proximity to more powerful frequencies. The next step is to screen the

residual series

T ey = x(e) - u{”(c). t=1,2,...,T, (3.8)
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where u(n(t) is the estimated regression function consisting of the
above n, frequency components; the hli-l. coefficients, L and

(a,, Bj)' J=1,2,...,m;, 1in the regression function
u,(t) = ay+ J 1“‘ eo.(z:fmt) + lein(z'lfu)t)} (3.9)

are estimated by least-squares, using any standard regression computer
program. Screening is done by computing the amplitude density function
of (3.8), and repeating all the above tests. If =, denotes the number
of frequencies declared significant at this second-step, ,then wem, +m,

is the total number of significant frequencies detected.

Final Search. Estimate the 2mtl coefficients, % and (aj' Bj).
j=1,2,...,m, 1in the regression function

u(t) = L) + }:j_l{a cos(z'lfu)t) + 8B sin(thg;t)}, t=1,2,...,T,
(3.10)
by least-squares, denote the coefficient estimates by c(r) and (cgn, ;n),
j=1,2,...,m, respectively, and let

ij”l - {l:mf’):l2 + ta}”]’)”. 3=1,2,... 0. (3.11)

Then, asymptotically, for large T (Crenander and Rosenblatt 1957, p. 246),

the approximate covariances of (3.11) are

covl|v{P|, Ivgnl} = S1-1lg (£(4y)/T, 1,371,2,....m,
(3.12)
vhers 5{a) is the Kronecker delta. If gf”(f) is a suitable estimator of
g (0, and 12 3700 < 5{7(8,) tor some £, then the bound
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var{ h;‘r) REELI AV (3.13)

yields an approximate, but conservative, 95 percent confidence

interval on ['yj[ - {ai + 8:},!.' namely,
ISP =+ 20s{7 g%, (3.14)

As long as any of the m frequencies has an associated confidence interval

(3.14) which does not contain the value zero, then that frequency is

declared significant and is retained in the final model. Otherwise, the
frequency is dropped from further consideration. The value k is then
taken to be the number of significant frequencies from this final

selection stage.

3.2. An F-Directed Search Procedure

Another significance test for periodicities was proposed by Hartley

(1949), who used a least-squares regression approach to finding a different

(1),2
)
Since Hartley's procedure is not as well known as that of Fisher, we

normalization for the [e values in (3.4) than was used iIn (3.6).
shall first review its salient points for the periodogram case.

Prom the N TFourler frequencies available, nominate m of them to
be potentially significant. Denote these by rj/‘r, §j=1,2,...,m, where

is an integer between 1 and N. Next, set

*3

sin(2wr, t/T)) + e(t) , (3.15)

x(t) = oy + t;_l{ajcos(Zth/'r) -l-,'.',j 3

vhere €(t) 1is Caussian and satisfies assumption (A) above, and estimate

(uj.Bj). J=1,2,...,m, by least-squares. The least-squares estimates are
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given by (.;r).bfr)). 3=1,2,...,m, respectively (see (3.1), (3.2),
wvhere ffn - :j/'r, j=1,2,...,m), and the fitted regression function
by

xm () =X + t;'_lfa;ncos&wrj:l'r) +b§r)sm(2njtl'r) 1. (3.16)

By virtue of the orthogonality of the trigonometric functions in (3.16),
the regression sum of squares (SS z eg) can be expressed as the sum of m
uncorrelated sums of squares; that is,

T (1),2

$5,0g = Trmy (0D = 03 1) (.17)

(see (3.3)), vhere, under the hypothesis that m = 0 in (3.15), each
T , (T),2
2 [e5 )
two degrees of freedom (d.f.). The residual sum of squares (xss-) from

in (3.17) has an independent chi-squared distribution with
the m-component regression (3.14), namely,

- (1) 2
BSS, = I, (O en?, (3.18)

has an independent chi-squared distribution with T-2m-1 d.f. Hartley's

test statistic for individual (Fourier) frequencies is, them

- & 1eDy2 g
LITY) 15 [c(j)] /nss-}('r 20-1)/2 , (3.19)
for 3j=1,2,...,m, where the [cgglz,...,[cg;]z are the = largest

values in (3.4) (cf. (3.6)). As an approximation to the upper percentage
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points of the distribution of (3.19), Hartley suggested that the (Fourier)
frequency corresponding to [cg;IZ be declared significant at the a2
level 1if F(j) is larger than the tabulated (a/(m-j+1))ZX point of the F
distribution with 2 and T-2m-1 4d.f., 3=1,2,...,m. The value of k

is then taken to be that number of (Fourier) frequencies that are declared
significant by this method.

Typically, however, the m largest local peaks in the graph of the
amplitude density function will not be located at Fourier frequencies,
and, consequently, the [cgr)]z, j=1,2,...,m, will not be uncorrelated.

We could, of course, argue, as we did in Section 3.1, that the differences
tetween the frequency estimates and their nearest Fourier frequencies

will be relatively small (see (3.5)), so that, for 1ifj, [ci?)lz and
[cfr)]2 wili be approximately uncorrelated, and hence that Hartley's
technique will be approximately valid. However, we prefer instead — both
for computational and for statistical reasons — to re-interpret hartley's
procedure in a siightly different way, and then use that particular formu-
lation here.

It is not difficilt to see that for the special case of Fourier fre-
quencies Hartley's methbd is equiv;lent to the following multistage proce-
dure, and, by virtue of the argument noted in the previous paragraph, 's
approximately equivalent for the more general case. Since at each stage
we carry out a series of one-component regressions, consideration of a
fairly large number of frequencies is computationally feasible,
especially if T 4s large. Furthermore, because at each stage we select

a frequency using an F statistic formulation, the overall procedure is

called "P-directed” and resembles a "forward stepwise" regression algorithm.




-26-

In the following discussion we attend to the general case and write
T

frequencies are Fourier frequencies, then £§'1') = rjl'r. j=1,2,...,m,

3=1,2,...,m, for the m noninated frequencies; if these

for some integer rj between 1 and N.
Consider, them, the problem of selecting k frequencies for the

regression model

X(t) = ay + Iy, (o con(2me{ De) 48 staCane ey} 4ele) . (3.20)

(T) ¢y

where f 0 is the first frequency selected, £ ) is the second frequency

selected, and so on, from a set of m potentially significant frequencies

1Y)
£

assumption (A). The selection rule is the following.

s §=1,2,...,m, k < m, and where €(t) is Gaussianand satisfies

1. At step 1, let F:B: be the largest of the m F-ratio statistics,

rgl), j=1,2,...,m, obtained as follows. Regress X(t) on the pair of

components (cos(Z'u'f;T)t), sm(wa(r)t)), and obtain the regression sum

3
of squares, ssg;. 3° having 2 d.f. Then, compute the statistic
1) e}
LA {ss“%' j/xzss-}('.r-zm-n/z ’ (3.21)

vhere RSS_ is the residual sum of squares obtained by regressing X(t)

on all =m components (cos(2wf.;r) t), .m(zuff")c), i=1,2,...,m).

Clearly, l';n has the P-distribution with 2 and T-2m-1 d.f. Set

r&l - nx{l?jl), ju1,2,000,m) . (3.22)
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1t P'(:i 1s "significant”, then declare the frequency corresponding to

!m as being significant, and denote it by fg;. Compute the residuals

from X(t) after fitting the regression function (3.20) with kel.

2. At step 2, let P::i be the largest of the m-1 P-ratio statistics,
?1(2). i=1,2,...,m, J¥(1), obtained as follows. Regress the residuals from

step 1 on the pair of compouents (cos(mj(”t). m(m}nt)). and obtain

the regression sum of squares, Sssz 't having 2 d.f. Then, compute
the statistic
) (2) (3.23)
¥ {ssng’ /B8, H(T-2mt1)/2 .

where nssn_l is the residual sum of squares obtained by regressing
the residuals from step 1 on all the remaining m~1 components

(cos(wagnt), sin(2ﬂf§r)t), 3=1,2,...,m, J¥(1)). As before, F}z)

has an P-distribution, but with 2 and (T-2m+l) d.f. Set

(2)

r&)‘ = max(r}?), gu1,2,....m, 3D} . (3.24)

1f Fﬁi is "significant"™, then declare the frequency corresponding to

Pﬁi as being significant, and denote it by fg;. Compute the residuals

from X(t) after fitting the regression function (3.20) with k=2,

3. In general, let fg;.fg;....,fg; be the r frequencies declared

significant at the conclusion of step r. At step r+l, let F:l::l) be
the largest of the n-r F-ratio statistics, ?(ﬁl). §=1,2,...,m,

h
§4(1),(2),...,(r), as follows. Regress the residuals from step r on
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the pair of components (col(ergnt), a:ln(wagnt)). and obtain the

regression sum of squares, ssf::l;, having 2 d.f. Then, compute
the statistic
rj(""l) - (ss{T M ress,_ Hr-mar-nrz (3.25)

where nss" is the residual sum of squares obtained by regressing the
residuals from step r on all the remaining =z-r components

(cos(zuj(nt), .m(znff)c). 3m1,2, .0 0my 35C1),(2),..0,(x)), and set

(x+l)

r::n-ux{?j 1371,2,0000m, 35(1),(2),..., ()}, (3.26)

if F::;D is "significant™, then declare the frequency corresponding to

l,(:~+1)

(r41) 45 betng significant, and demote it by (D i D 44

(r+1)° max
"not significant”, then terminate the selection procedure. The value
of k is then taken to be the number of frequencies decleared to be signi-

ficant according to the scheme.

The question of "significance™ in the above algoritim relates to the pro-
blem of comparing, at any particular step, the observed value of rm to
the tabulated upper percentage points of the distribution of the largest
order statistic from a set of correlated F variables. Since, at step

r (1L <r<m), the demoainators of each of the f?j(r)} are fdentical,
results obtained for the multivariate F distribution (Gupta and Sobel

1962; Krishnaish and Armitage 1965) would appear to be applicable.
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However, the numerators of the {F;r)} are a correlated set of x:
variables, which, in turn, leads to more complicated results for the
distribution theory. The paper by Kristmaiah and Rao (1962) may be

useful here in defining a "generalized" multivariate F distribution;

see Johnson and Kotz (1972, Section 40.,8). For the present paper, however,
we shall use a Bonferroni-type approximation to the upper percentage
points of Yux similar to that suggested by Hartley for the independent
case. Thus, at step r (1 < r < m), declare l?::: to be significant at
the aZ level if F(r)

max

of the F distribution with 2 and T-2(m-r+l)-1 d.f. (We note here

is larger than the tabulated (a/(m-r+l))X point

that alternmative approximations may be obtained from the multivariate
probability inequalities of Karlin and Rinott (1980).)

If additional significant frequencies are suspected, but which may
be hidden behind the more powerful ones, the following procedure will
be appropriate. First, test as above for those m, frequencies which

are considered poteatially significant. Let k1 of them be declared

signific-at. Then, obtain the residual series by fitting all kl fre-
quencies to X(t), and recompute the amplitude density function for the
residual series. If any additional frequencies appear to have relatively
large ordinates in the graph of that function, add these, say m, in
number, to the kl previously tested, to arrive at a total of m= l:l-lnz.

Then, repeat the above F-directed search procedure for all wm nominated

frequencies.




&. ANALYSIS OF THE ANNUAL SUNSPOT NUMBERS

The techniques of this ‘papct wvill now be illustrated using the well-

known time series of annual sunspot relative numbers from 1749 to 1979,
a period of T = 231 years. The data are taken from Waldmeier (1961,
PP. 20-21) for the years 1749-19€0, and from Izenman (1981, Table 1.1)

for the remaining years.

The sunspot numbers have received a (well-deserved) reputation in
the statistical literature for being one of the most difficult series to
model successfully, primarily because of its nonstandard features
(Bloomfield 1976). We emphasize hers that the analysis presented in
this Section is not claimed to be the best for predicting sunspot behavior
in the future; indeed, the nonGaussisn, nonstationary, aperiodic, and non-
linear behavior of the series maks fits fitting and prediction an extremely
complex affair. However, it is precisely because of these nonstandard
features that make the sunspot numbers such an interesting and nontrivial

example for dJdemonstrating the methodology of this paper.

4.1. The Annusl Sunspot Numbers

The graph of the amplitude density function (2.20) with Af = 10™° of
the mean-corrected annual sunspot numbers is displayed in Figure 1. The
prominent features of that graph include two clusters of large peaks, one
at the very low frequencies, and the other at frequencies around the
so-called "1ll-year sunspot period”. WNinety-eight local maxima were
located vithin the frequency band 0 < f < ). The next step, therefore, is
to screen these peaks for significant frequencies. We shall use the two

ssarch procedures described in Sectiom 3.
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(1) VFirst, we consider the search method outlined in Section 3.1.
The total variance of the series l; = 1583.32826. If we carry out the
procedure as described, we pass a total of nine frequencies, a number
comparable to that obtained by Demsleth and Spjétvoll (1982). However,
vhen compared to results obtained by Hill (1977), Rust and Kirk (1977),
and Siddiqui and Izenman (1981) for the monthly sunspot numbers, and
since it can be argued that the major frequencies in the annual series
should be similar in number and location to those major low frequencies
in the monthly series, we conclude that, for some reason, too few frequen-
cies are being passed here. The problem lies in the fact that the annual
sunspot numbers are computed from the monthly numbers by averaging in dis-
joint blocks of length twelve, thereby smoothing out the highest amplitudes
of the monthly sunspot numbers. An adjustment is necessary, therefore — in
a downwards direction — to the entries in Shimshoni's Tables to take this
into account. We propose to do this here by multiplying Shimshoni's cri-
tical values, gj ,T,a° by a "compensation factor", h:z, say, 0 < "12 <1,
which we take to be a location parameter of the distribution of the ratio
of the mean to the maximum in a sample of size twelve from some appropriate
underlying distribution defined on [0,»). In general, this problem is non-
trivial and remains open. A related reference is the paper by Maller and
Resnick (1981), which considers the limiting behavior for large sample sizes
of the above ratio statistic; however, their results do not seem to be of
help to us.

Since the results we need are not currently available, we are led to the
following approximation. From the monthly sunspot numbers, we computed the

231 ratios of annual pean to "annual maximum" (that is, the maximum monthly




sunspot number for that year), and then set hu = 0.62, the median of all
those values. The histogram of the annual ratios is displayed in Figure 2.
2.2
Thus, 2.1"‘12‘1,100,0.05 = 89.81. This critical value passes the
following eight frequencies:

T) 2

. Y A L

1 «0902 11.087 780.7

2 - 1005 9.950 616.3

3 .0107 93.346 343.7

4 0945 10.582 341.3

5 «1062 9.416 246.7

6 0172 58.140 173.0

7 .0835 11.976 159.5

8 .0039 256.410 118.7
where pg; is the period (in years) corresponding to f g;. that is, pg; =
llfg;. Row, 3,9, and, by interpolation in Shimshoni's Table, we get that

8.100,0.05 = 0-02902, whence 2e7h3,g0 100 o o= 35.32. This second
t Aadhd 'Y Ve

critical value passes eight further frequencizs, namely,

] £ o) (e{Dy?

9 .1168 8.562 76.3
10 0772 12.953 71.7
11 .0232 4.698 66.1
12 .1115 8.969 S4.7
13 0716 13.966 54.5
14 .1233 8.110 48.8
15 0473 21,142 46.6
16 .0668 14.970 43.0

2
At the next stage, ,=17, so thet §;; 109 o os = 0-02177, and 2'-%“12317,100,0.05

= 26.50. The next largest value of lZc(T)]2 is xx.x, corresponding to the

frequency .xxxx; however, this value is too low to be passed by this test.
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The value of m, is, therefore, 16. A ccmputation of the resulting
sixteen-component regressiog function, and of the amplitude density function
of the residusl series, revealed an additional frequency which is passed

by the above test, namely,

(1) (1) ()2
3 £ ey Legn
17 -1199 8.340 46.1

8o that mz-l, and hence m=17.

Now, we make a final selection from these seventeen frequencies. After
computing the fitted regression fumction using these seventeen frequency
components, we examined the autocorrelation and partial autocorrelation
functions of the residual series, and determined that the best, and most
parsimonious fit to that latter series would be a second-order autoregressive

process of the form
e@ () = 0D e-1) + 0,6P(e-2) + 800,

where 8(t) 1s a vhite noise process with mean zero and variance ci.

saximum-likelihood estimates and associated standard errors of the two

The

parameters in the model are:

parameter MLE SE
01 .6736 0652

and t;i = 146.4. The roots of the corresponding characteristic equation
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are both couplex, indicating pseudo-periodic behavior of the t(.r) (c)-
process (Box and Jenkins 1976, pp. 58-63). The estimated spectral
density function of the residual series is, therefore, given by

s (1) = 252 [{HIND-2, (14 dcos (2r8)-24 jcos (430}

= 292.8/{1.5923~1.8486cos (2x£)+0.7444cos (43£) },
vhere 0 < f < ). The maximum of ggn(f) occurs at £ = f,, where

cos(2a£,) = ¢, (1-9,)/(~44,) = 0.6208;

that is, £, = 0.143. Thus, 50 (6) <8 P(£,) = 1068.2325, so that
v;r{lv_fr)l} < 1068.2325/231 = 4.6244. Conservative 95 percent confidence
limits on l'rjl are given by |y§r)| t 4.3009. Examination of the seventeen
values of I'yjcr)l showed that these limits passed fourteen out of the seven-
teen frequencies passed at the preliminary screening; the three frequencies
that were eliminated are .1168, .0716, and .1115. Table 1 shows the final
fitted regression coefficient estimates for the fourteen-component function,
and Figure 3 gives a visual display of the observed series of annual
sunspot numbers and the fitted regression function. The amount of total
variance explained by the fitted function is 85.4 percent.

(2) Next, we consider the FP-directed search method as described in
Section 3.2. Eighteen frequencies were nominated as potentially signifi-
cant, which were also the largest eighteen peaks in the graph of the
smplitude density function (see Figure 1). The steps in the search proce-
dure are set out in Table 2, where we have taken G = 1.0 and m = 18,

At step r, we compare ths value of !(r)

ax  t° the (1/(19-r))X point of
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the F distribution with 2 and 192+ 2r d4.f., and note that

0.1 _ 0.5% _ .0%
Bt =61, FyF-s., r;'. - 4.61 . .1)

Thus, 15 out of the 18 nominated frequencies were found significant by
this method, and the amount of total variance explained by the fitted
function is 86.4 percent.

To summarize the above results, we note the following. First, we
were able to separate the two major frequencies .0902 (11.087 years) and
.0945 (10.582 years) from each other which are less than 1/T apart.
Second, although periodogram analysis of the annual sunspot numbers
exhibits a "broad peask of indeterminate width" extending from the
frequency .0625 to the frequency .1250 (Bloomfield 1976, p. 96), we have
shown that there are actually nine quite distinct and significant
frequencies inside that band. We also identified a new major frequency in
the series, .0039 or 256.41 years, which should be taken with some caution
since its length exceeds the length of the series itself. However, it
does suggest that the resolution of this technique is high enough to enable
it to identify cycles from series whose length is less that the period of

that cycle.

4.2. The Signed Annual Sunspot Numbers

Since the sunspot numbers are, by definition, nonnegative, this

introduces an implicit, but major, restriction onto the form of the fitting
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function. Any unconstrained model that attempts to follow closely the
course of the sunspot nunmbers over time will, therefore, be estimated by

a function that will not necessarily be nonnegative at each of its minima.
Such a feature may be seen, for example, in FPigure 3, where certain very
low minima are fitted by negative numbers. For many similar series, little
or nothing can be done to alleviate this problem without making the model
correspondingly more complicated. However, we are fortunate in that a
very natural and physically meaningful data transformation is available to
us vhich eliminates this problem and, furthermore, dramatically improves
the performance of the nodel.

In 1908, G. E. Hale discovered the existence of the solar magnetic
cycle, in which alternate ll-year sunspot cycles are accompanied by a
reversal in polarity of the sun's magnetic field (Bray and Loughhead 1964).
Loosely speaking, cycles having 'positive’ magnetic polarity are invariably
succeeded by cycles having 'negative' polarity, and vice-versa. These
results led Hale in 1925 to conclude that & "complete” solar cycle was
actually of the order of 22 years, from the start of a positive cycle
through to the start of the next positive cycle. This fact, now well-
established in the scientific literature, led Bracewell (1953) in a short

letter to the journal Bature to suggest that perhaps sunspot numbers

corresponding to years of negative magnetic cycles be assigned a minus
sign, vhile sunspot nunbers associated with years of positive cycles be
unchanged. The result of such a transformation is a reflection through
the time axis of every other ll-year cycle of sunspot numbers. Thus, the
series would no longer be constrained in the above sense. Now, minima
would be represented by the zero-crossing points of the graph of the series

through the time axis, negative numbers would possess a natural physical
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interpretation, and maxima would be given by the sequence of alternmating
positive and negative extrema of the transformed series. For our purposes,
it is necessary to assume that the solar magnetic cycle was present for

at least three hundred years prior to its discovery. It is surprizing

to note that although Bracewell's suggestion appeared thirty years ago,

we could find only three articles in which similar suggestions were put
forward; these were in a2 brief reference to Bracewell's letter by Moran
(1954), a comment (but not followed up) in Brillinger and Rosenblatt (1967),
pP. 215, and in a recent note in Nature by Hill (1977).

A technical remark on the use of this transformation is in order here.
Since, in most instances, a minimum occurs midway through a year, the
question is raised as to whether that year be assigned a positive orx a
negative value. One way of settling this is to examine the series of
monthly sunspot numbers for the minimum year in questionm, determine a
month of minimum by inspection (which, in some cases, may not be unique or
even obvious), assign plus and minus signs as appropriate up to and then
following the month of minimum, and finally, recompute a new annual mean
for that year. The general effect of such a recomputed transition sunspot
number is to smooth the transition from positive years to negative years
and vice-versa. TFortunately, it appears that precise determination of the
month of minimum is not crucial for a successful application of the methods
of this paper, and anyway, in some cases, 2 definitive minimum month will
be difficult to resolve by means other than by guesswork.

The graph of the amplitude density function (2.20) with Af = 10™°

of
the mean-corrected signed annual sunspot numbers is displayed in Figure &,
Ninety-four local maxima were located within the frequency band 0 < f < g,

and the most prominent feature visible in the graph is that the two clusters
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of frequencies in Figure 1 have now been replaced by a single cluster
approximately midway between them. The transformation appears to have
removed most of the longer cycles in the original series.

(1) The total variance of the transformed series is s = 4101.5426, and
from Shimshoni's Table 2(b), we again have 31.100’0.05 = 0.07378. Ve now
need to make a similar argument as for the original series in Section 4.1
and come up with a value for hn the compensation factor in going from the
series of signed monthly sunspot numbers to the signed annual numbers. To
obtain the signed monthly numbers, we would have to go back to the daily
sunspot numbers; rather than do this, we note the following. For the
"positive” éycles, the ratio of signed annual mean to signed annual maxioum
for each year will be the same as those for the original series, and for the
"negative” cycles, the ratio of signed annual mean to signed annual maximum
will be equal to the ratio of (original) amnnual mean to (original) annual
minimum, which, in turn, will be greater than or equal to the ratio of
(original) annual mean to (original) amnual maximum. Bence, from the

results of Section 4.1, we can assume, for the signed series, 0.62 < hn <1,

2
To allow maximm flex:lbility here, we take hn-°°6z' Thu'. zsélusl.loo'ooos

= 232.65, which passes the following five frequencies:

L I S 1
1 0449 22.272 5374.0
2 .0557 17.953 1545.6
3 .0505 19.802 983.7
4 .0611 16.367 491.9
5 .0388 25.775 298.4

Now, J 1-6. and, by interpolation, we get 86.100.0.05 = 0.03504, whence

2 -
2‘:’“1286,100,0,05 110.49. This critical value passes two further frequencies,
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namely,
(1) 0 )2
3 ) Py) Le)d
6 .0343 29.255 161.5
7 .0269 37.175 132.6

Next, 3,=8, so that g5 100 o os = 0.03104, and 262 - 97.88.

1'1288,100,0.05
This critical value passes a single additional frequency, namely,

(1) () (r).2
3 £61) P le(y)3
8 .0802 12.469 102.4

This time, 3,29, gy 100 o o5 = 0-02902, and 2s:h « 91.51, vhich

2
12%9,100,0.05
passes the two frequencies

(1) (1 (1),2
3 £1) P1) Cegs)?
9 1454 6.878 95.4

10 .1379 7.252 94.6

2,2
0.02627, and 2s;h) .8,y 109 0.05

is 79.4, which corresponds to the frequency

Now, ja-ll = 82.84. The

» 811,100,0.05
.‘.C(T) ]2

next largest value of {
.1508 (or, 6.63 years), but which is too small to pass the test. Hence,
ml-lo, and a screening of the residual series from the ten-component fit
gives mb-o, so that o=10.

As in Section 4.1 we make a final selection from these ten frequencies.
The best, and most parsimonious, fit to the residual series after fitting
a ten-component regression function from the above frequencies is a second-
order autoregressive process of the form (4.1), where the estimated

parameters and their standard errors are:
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parameter MLE SE
01 8945 0640

and ;i = 183.1. As before, the roots of the characteristic equation are both
complex, indicating pseudo-periodic behavior, and the estimated spectral

density function of the residual series is givem by
gf") (£) = 366.2/{1.9242-2.4193cos (2x£)+0. 7046c05 (47£) },

where 0 < f < 4, with a maximum value at £ = f, = (2:)-10.05.1(0.8584) = 0.0857.
Bence, g1 (£) £ 88T (£,) = 2019.38, so that er{ijml} < 2019.38/231 = 8.74.
Conservative 95 percent confidence limits on ly j‘ are, therefore, given by
[yfr)l % 5.9133. These limits passed all but one of the frequencies passed

at the preliminary stage, the frequency being eliminated was .0343. Table 3
1ists the coefficient estimates of the nine-component regression function,

and Figure 5 gives a visual display of the signed annual sunspot numbers and
the fitted regression function. The amount of total variance of the signed

series explained by the fitted function is 91.0 percent.

(2) For the P-directed search procedure, fifteen frequencies were nominated
as potentially significant, which were also the largest peaks in the graph of
the amplitude density function (see Figure 4). The steps in the search pro-
cedure are set out in Table &4, where we have taken a= 1.0 and =m = 15.

At step r, we compare the value of Fﬁz to the (1/(16-r))Z point of the

F distribution with 2 and 198+ 2r d.f. (see(4.1)). Thus, 12 ocut of the 15

nominated frequencies were found significant by this method, and the amount

of total variance explained by the fitted function is 92.6 percent.
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4.3. The Frequency Trace

One way of judging the extent of nonstationarity in a time series is to
complex demodulate the series at a specific frequency (Bingham, Godfrey, and
Tukey 1967). When this is done for the annual sunspot numbers at a frequency
corresponding to an ll-year cycle (Bloomfield 1976, pp. 137-140), substantial
variations over time in both amplitude and phase become immediately visible.

The techniques presented in this paper can now be used to complement that

approach so that we can actually quantify the movement (if any) of any
frequency estimate over time. Such a direct measurement of "frequency
drift" is made possible only through a high-resolution frequency
analysis.

If a process is truly stationary over time with fixed periodicities,
then by extending the length of the physical record for that process
by concatenating additional observations to either end, the resulting
frequency analysis should not be radically effected. In other words,
we should not expect the overall shape of the graph of the amplitude
density function to alter perceptively by a lengthening of the series
record. This argument suggests two distinct ways of obtaining a
sequence of estimates of each major frequency of the series. They
are the following:

(1) Fix an initial reference time point (which could be, for

example, the first observation), compute the graph of the amplitude

density function for an initial series length of T, values (where

1

'rl < T) starting from that initial time point, and thereby obtain the
(T,)
estimate fj 1 of fj' Next, increase the record length to Tz obser-

vations by adding Tz-Tl more recent data points to the 11 values
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already analyzed ('rz < T), and repeat all previous computations to
(T,)

get a second estimate fj 2 of fj‘ Thus, by successively increasing

the amount of data available on the process by, say, n steady increments

of T1+1-T:l cbservations, i=1,2,...,n, and where, gp;.cally, 'rnﬂ = T,
we can obtain a sequence of "forward estimates"™ fj 1 s 1=1,2,...,0F],

£f£,.
R
(2) The alternative procedure is to fix a fina) reference time

point (the latest observation, perhaps), compute the amplitude density

function for a series record of length 'r1 terminating at that final
(1,)
1
of £,. Now
b 3 ’

increase the record length to '1'2 observations by adding '1'2—'1'1 more

ancient observations to the front end of the series, and obtain a
(1)
second estimate f.1 2 of fj. In this way, by increasing in a

time point ('rl < T), and obtain the estimate f

systematic fashion the amount of data available on the process, we

(t,)
can obtain a sequence of "reverse estimates" f 1

5 s 1=1,2,...,0H, of

fj,where'r <T and'rn‘_-'r.

i i+l 1
In certain situations, such as for the sunspot numbers series, both

approaches may be of independent interest.
(T,)
3 1 » 1#1,2,...,0+]l, denote the ntl estimates of fj as
(T,)
determined by either of the two methods above, we now plot f 3 1

against Ti’ i=1,2,...,nt+l. If the corresponding period pj - llfj is

Thus, if £

stable over time, the resulting plot should reveal an approximate

straight-line parallel to the horizontal (time) axis. We call such a

plot the frequency trace of f;r), and, to distinguish between the two

types of estimates, we shall refer to the trace as either a forward

frequency trace or as a reverse frequency trace of ffn according as

the initial or the final reference time point is held fixed. There is
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no reason to expect these two types of frequency traces to be identical.
Particular and persistent deviations from a straight-line plot will
give a quantitative description of the direction and extent of any
nonstationarity present in the series.

In Figures 6a, b, and c, we have plotted frequency traces for the
triplet of close frequencies from Table 1 around the so-called "1l-year
sunspot pertod”, namely, £17) = .0902, £{7) = .1005, and £ = .083s,
with Af = 10.,' and '1'1"_1--'1.‘1 = 2, i=],2,...,n, for the annual sunspot
numbers. These plots each indicate nonstationarity of the series. For
example, if we use all 231 available sunspot numbers for 1749-1979, the
most prominent frequency is estimated to be .0902 (11.087 years); how-
ever, the most recent, and certainly the wmost reliable, data (at least,
since 1930) suggest that it might be wiser to estimate it (say, for
prediction purposes) as .0952 (10.504 years). Apparently, the "]l-year
sunspot cycle" has been getting systematically shorter with time. Others
(such as Currie 1980) have also noticed this phenomenon, but by using
different methods. We have also plotted in Figures 7a, b, and ¢ the
frequency traces for the three longest periods detected in the sunspot
series (see Table 1), namely, £V = .0107, £.7) = 0172, and £ =
.0039. The rapid shifts in the various frequency estimates over time
may have implications for the historians' claims of variability in the

quality of the actual sunspot mumbers used to compile the more ancient

data (see Eddy 1976; Izenman 1981).
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Estimates of parameters for the lé-component

fit to the series of' anmual mean sunspot relative nuabers,

1749-1979.

sagnitudes of the |yjm|.

Frequency components are ordered by decreasing

s g P ofD oD )
o constant 49.019
1 .0902 11.087 25.115 15.181 29.347
2 .1005 9.950 14.89% 12,115 19.199
3 .0107 93.346 6.062 15.177 16.343
4 .0835 11.976 =11.246 10.807 15.597
5 .09%45 10.582 9.059 -10.688 16.011
6 .0172 58.140 - 7.889 - 7.246 10.712
? .1233 8.110 3.870 - 9,957 10.682
8 .1062 9.416 - 0.634 9.448 9.469
9 .1199 8.340 1.434 -8.911 9.026
10 .0473 21.162 5.759 - 5.117 7.704
1 .0039 256.410 4.927 - 5.171 7.143
12 0772 12,953 - 2.261 6.008 6.419
13 .0232 4,698 4.828 - 3.610 6.028
14 .0668 154,970 - 0.296 5.043

- 5.034




Table 2.

time series of annual mean sunspot relative numbers, 1749-1979.
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Summary of ANOVA selection of signiffcant frequencies for the

Frequen~

cies were entered into the model if their corresponding Fpax statistic

was significact at the 1X level (see text, Section 3.2).

The total sum

of squares for the series is 364655 with 230 d.f., and mw was taken as 18.

r fg; ssg; BSS__ . 2
1 .0902 90439 45317 193.58 25.8%
2 .1005 59578 46632 125.20 2.7z
3 .0107 40481 47818 83.81 52.52
4 .0835 31159 49322 63.17 61.42
5 .0945 20040 49671 40.75 67.3%
6 .0172 14896 42239 35.98 .62
7 .1233 10228 46359 22.72 7.4%
8 .1062 9279 47045 20.51 77.12
9 .1199 7895 46828 17.70 79.5%
10 .0473 6167 46607 14.02 81.2%
1 .0039 4254 46761 9.76 82.4%
12 .0772 4012 46411 9.33 83.6%
13 .0232 3774 46284 8.88 84.72
14 .1833 3508 46015 8.38 85.72
15 .0668 2693 45937 6.50 86.4%
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Table 3. Estimates of parsmeters for the nine-component
fit to the series of signed annual mean sunspot relative

nunbers, 1749-1979. Frequency components are ordered by
decreasing magnitudes of the IYgr)l.

3 fjr) pjr) °J(‘l') B;'r) |7§T)|
0 constant - 1,324

1 .0449 22.272 68.812 11.227 69.722
2 .0557 17.953 14.650 23.496 27 .689
3 .0388 25.775 -~16.952 2.297 17.107
4 .0505 19.802 15.209 1.347 15.269
S .0611 16.367 - 9.392 7.896 12.270
6 .0802 12.469 8.973 6.045 10.819
7 .0269 37.175 3.1 9.607 10.321
8 1454 6.878 9.154 1.792 9.328
9 1379 7.252 - 8.067 3.156 8.662




f’.

~48-

Table 4. Summary of ANOVA selection of significant frequencies for the
time series of signed annual mean sunspot relative numbers, 1749-1979.
Frequencies were entered into the model if theire corresponding Fpax
statistic wvas significant at the 1I level (see, text, Sectfion 3.2). The
total sum of squares for the series is 943355 with 230 d.f., and m was
taken as 15.

r tfi% ssgzz BSS__ 4 A5 R

1 .0449 626448 61198 1023.64 66.4%
2 .0557 106372 70863 151.61 77.92
3 .0388 35333 66386 54.29 81.8%
4 .0505 24925 64885 39.57 84.7%
5 .0611 13641 62575 23.43 86.22
6 .0802 13799 61830 22.67 87.62
7 .0269 11989 61755 20.58 88.9%
8 .1454 10783 61640 18.72 90.1%
9 .1379 8278 62154 14.38 91.02
10 .1287 5862 61765 10.31 91.62
1n .1031 4652 61713 8.29 92.12
12 .1508 4566 61667 8.22 92.6%
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